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Motivation

Introduction I

Principal component analysis (PCA) is a feature extraction
method.

−→ I.e. it is a method that reduces the dimension of data points by
calculating fewer new variables while retaining as much information as
possible.
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Motivation

Introduction II

Reminder: We consider given data as a matrix X:
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Motivation

Introduction II

Reminder: We consider given data as a matrix X. Specifically, in the
case of dimension reduction we consider the following aspects:

Applying feature extraction means computing n values of new
(random) variables X̃1, . . . , X̃p, p < m, which make up the columns of
a new matrix X̃ that contains data points in Rp, p < m, so that
we can reasonably perform analysis on the data X̃ instead of X.
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Motivation

Introduction III

In PCA, specifically, this is achieved via

1 First, an orthogonal linear transformation that transforms the
data to a new coordinate system such that the greatest variance
by some scalar projection of the data comes to lie on the first
coordinate (called the first principal component), the second
greatest variance on the second coordinate, and so on.1

2 Then, the dimension is reduced by projecting each data point on
the first p principal components, so that most of the variance
remains explained.

1Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics.
New York: Springer-Verlag. doi:10.1007/b98835. ISBN 978-0-387-95442-4.
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Motivation

PCA Motivation: Principal components I

First, let us understand the principal components (PCs)
(Calculation of which is itself not a dimension reduction technique!)

Intuitively, for a Rn×m data matrix we can think of the principal
components as the axes of a m-dimensional ellipsoid fitted to the n
data points in Rm, ordered by length in descending order.

Examples for m = 2 and m = 3 are given by the following:
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Motivation

PCA Motivation: Principal components II
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Motivation

PCA Motivation: Projecting data points on the PCs I

The next section will formalize what constitutes principal components
given data n data points in Rm.

For now, please keep the following in mind:

1 The PCs (as axes of an ellipsoid) are orthogonal to each other
and there are exactly as many as dimensions of the data points

−→ We can easily consider the continuation of each PC as an axis in an
m-dimensional coordinate system.

2 Heuristically, we can observe that the longer a PC/axis, the higher the
variance of the data "in that direction".

3 One can use a matrix P with P = P 2 = P⊤ to orthogonally project
data points x ∈ Rm onto a vector (line) such as a principal
component in Rm.
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Motivation

PCA Motivation: Projecting data points on the PCs II

Source: https://medium.com/@mayureshrpalav/principal-component-analysis-feature-extraction-technique-3f480d7b9697
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Spatial intuition for matrix multiplication

To gain a deeper understanding of PCA, it is helpful to have some
spatial intuition for the linear transformation of a point in Rn, n ∈ N,
that is achieved by multiplication with a matrix A ∈ Rn×n.

To this end, we will first take a closer look at the linear transformation
of the unit circle using matrices in R2×2.

Throughout, please keep the following in mind:
Any matrix A ∈ Rn×n, n ∈ N, defines a mapping Rn −→ Rn, x 7→ Ax.
If it additionally holds that A = A2, this mapping is a projection.

For any square matrix A ∈ Rn×n, n ∈ N, v ∈ Rn is an eigenvector of
A corresponding to the eigenvalue λ of A, iff

Av = λv .
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 I

We begin with the unit circle and the identity matrix I2 =

(
1 0
0 1

)
.

Note that the eigenvalues of I2 are λ1 = λ2 = 1 and any 2 orthogonal
vectors in R2 of length 1 may be chosen as corresponding eigenvectors,
such as v1 = (1, 0)⊤, v2 = (0, 1)⊤; v1 = (0, 1)⊤, v2 = (−1, 0)⊤; etc.

Setup in R:
library(ggplot2)
library(tidyverse)
library(ordr)
library(metR)
library(RColorBrewer)

colors<-brewer.pal(8,"Set2")

circle <- function(center = c(0,0),r = 1, npoints = 100){
tt <- seq(0,2*pi,length.out = npoints)
xx <- center[1] + r * cos(tt)
yy <- center[2] + r * sin(tt)
return(data.frame(x1 = xx, x2 = yy))}

unit_circle <- circle()

Hannah Kümpel Multivariate Verfahren 12 / 65



A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()+geom_vector()
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()+geom_vector()+
geom_vector(aes(x=1,y=0),color=colors[1],size=1.5)+geom_vector(aes(x=0,y=1),color=colors[1],size=1.5)
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()+geom_vector()+
geom_vector(aes(x=1,y=0),color=colors[1],size=1.5)+geom_vector(aes(x=0,y=1),color=colors[1],size=1.5)+
geom_vector(aes(x=sqrt(1/2),y=sqrt(1/2)),color=colors[2],size=1.5)+geom_vector(aes(x=-sqrt(1/2),y=sqrt(1/2)),
color=colors[2],size=1.5)
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()+geom_vector()+
geom_vector(aes(x=1,y=0),color=colors[1],size=1.5)+geom_vector(aes(x=0,y=1),color=colors[1],size=1.5)+
geom_vector(aes(x=sqrt(1/2),y=sqrt(1/2)),color=colors[2],size=1.5)+geom_vector(aes(x=-sqrt(1/2),y=sqrt(1/2)),
color=colors[2],size=1.5)+geom_vector(aes(x=-1,y=0),color=colors[3],size=1.5)+geom_vector(aes(x=0,y=-1),
color=colors[3],size=1.5)
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 II

ggplot(unit_circle,aes(x1,x2))+geom_path()+theme_bw()+geom_vector()+
geom_vector(aes(x=1,y=0),color=colors[1],size=1.5)+geom_vector(aes(x=0,y=1),color=colors[1],size=1.5)+
geom_vector(aes(x=sqrt(1/2),y=sqrt(1/2)),color=colors[2],size=1.5)+geom_vector(aes(x=-sqrt(1/2),y=sqrt(1/2)),
color=colors[2],size=1.5)+ geom_vector(aes(x=-1,y=0),color=colors[3],size=1.5)+geom_vector(aes(x=0,y=-1),
color=colors[3],size=1.5)+geom_vector(aes(x=-sqrt(1/2),y=-sqrt(1/2)),color=colors[4],size=1.5)+
geom_vector(aes(x=sqrt(1/2),y=-sqrt(1/2)),color=colors[4],size=1.5)
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 III

Next, consider the symmetric matrix A =

(
2 5
5 2

)
.

We can get the eigenvalues and corresponding normalized eigenvectors
using the eigen() function in R:

Continue setup in R from slide 12:
A<-matrix(c(2,5,5,2),ncol=2)

Aevals<-eigen(A)$values
Aevecs<-as.list(as.data.frame(eigen(A)$vectors))

Aevals
#[1] 7 -3

Aevecs
#$V1
#[1] 0.7071068 0.7071068
#
#$V2
#[1] -0.7071068 0.7071068
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 IV

Multiplying A with every point u ∈ R2 on the unit circle results in the above circle!

ggplot(data.frame(x1=apply(unit_circle,1,function(x)A%*%x)[1,],
x2=apply(unit_circle,1,function(x)A%*%x)[2,]),aes(x1,x2))+geom_path()+theme_bw()
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 IV

ggplot(data.frame(x1=apply(unit_circle,1,function(x)A%*%x)[1,],x2=apply(unit_circle,1,function(x)A%*%x)[2,]),
aes(x1,x2))+geom_path()+theme_bw()+geom_vector(aes(x=Aevals[1]*Aevecs$V1[1],y=Aevals[1]*Aevecs$V1[2],color=
"multiplied with eigenvalue"))+geom_vector(aes(Aevals[2]*Aevecs$V2[1],y=Aevals[2]*Aevecs$V2[2],color=
"multiplied with eigenvalue"))+geom_vector(aes(Aevecs$V1[1],y=Aevecs$V1[2],color="standardized eigenvector"))+
geom_vector(aes(Aevecs$V2[1],y=Aevecs$V2[2],color="standardized eigenvector"))+labs(color = "")+
scale_color_manual(values = c("standardized eigenvector"="black","multiplied with eigenvalue"=colors[3]))+
theme(legend.position = c(0.15,0.9))
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 V

Next, consider the symmetric matrix B =

(
−4 2
2 −4

)
.

Again, continuing the setup in R from slide 12:
B<-matrix(c(-4,2,2,-4),ncol=2)
Bevals<-(-1)*eigen(B)$values
Bevecs<-as.list((-1)*as.data.frame(eigen(B)$vectors))

Bevals
#[1] 2 6
Bevecs
#$V1
#[1] -0.7071068 -0.7071068
#
#$V2
#[1] -0.7071068 0.7071068

Note that, if we have determined an eigenvalue λ and and
corresponding eigenvector v, we can clearly always replace them by
the eigenvalue −λ and and corresponding eigenvector −1 · v !
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 VI

Multiplying B with every point u ∈ R2 on the unit circle results in the above circle!

ggplot(data.frame(x1=apply(unit_circle,1,function(x)B%*%x)[1,],
x2=apply(unit_circle,1,function(x)B%*%x)[2,]),aes(x1,x2))+geom_path()+theme_bw()
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 VI

ggplot(data.frame(x1=apply(unit_circle,1,function(x)B%*%x)[1,],x2=apply(unit_circle,1,function(x)B%*%x)[2,]),
aes(x1,x2))+geom_path()+theme_bw()+geom_vector(aes(x=Bevals[1]*Bevecs$V1[1],y=Bevals[1]*Bevecs$V1[2],color=
"multiplied with eigenvalue"))+geom_vector(aes(Bevals[2]*Bevecs$V2[1],y=Bevals[2]*Bevecs$V2[2],color=
"multiplied with eigenvalue"))+geom_vector(aes(Bevecs$V1[1],y=Bevecs$V1[2],color="standardized eigenvector"))+
geom_vector(aes(Bevecs$V2[1],y=Bevecs$V2[2],color="standardized eigenvector"))+labs(color = "")+
scale_color_manual(values = c("standardized eigenvector"="black","multiplied with eigenvalue"=colors[3]))+
theme(legend.position = c(0.771,0.9))
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Transforming the unit circle with matrices in R2×2 VI

Question: Can we do the same for square, but non-symmetric
matrices?

Answer: Not exactly. While their multiplication with every point on
the unit circle would definitely result in a 2 dimensional ellipsoid
(ellipse), it’s axes would no longer coincide with the eigenvectors
multiplied with their corresponding eigenvalues.

Why? Because the eigenvectors of a non-symmetric matrix are not
orthogonal.

Outlook: We have already established that covariance
matrices are, by definition, always symmetric!
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Explained and residual variance: Linear regression I

The previous plot displayed a projection that minimized the distance in
both directions. Let us instead consider linear regression with one
regressor.

Specifically, let us again consider the Iris-regression from the Linear
Algebra lecture, where we fit a linear model with

Petal.Width as dependent and

Petal.Length as an independent variable.

library(ggplot2)
library(ggarchery)
set.seed(735)

data<-iris[sample(1:nrow(iris),10), c("Petal.Width","Petal.Length")]
lm(Petal.Width~Petal.Length,data=data)
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Explained and residual variance: Linear regression II
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A bit about the math behind PCA Spatial intuition for matrix multiplication
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Explained and residual variance: Linear regression III

Now, we could, e.g., clearly calculate 1
n−1 ·RSS and 1

n−1 · TSS as
the sample variance of the residual and total variances, respectively.

To do so equivalently to slide ??, we need only orthogonally project
our observations as follows:
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Explained and residual variance: Linear regression IV

−→ Given the mean of the target variable and the regression line as well as
the explained- and residual- variances for every observation we can
infer the coordinates of every point!

If the horizontal line at the mean of the target variable and the
regression line were orthogonal, we could clearly draw the a "point
cloud" with the exact same structure but with different individual
coordinates by using the continuation of these two lines as axes:

Source: https://www.baeldung.com/cs/principal-component-analysis
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Standardizing Variables I
Before we are finally ready for the definition of principal components,
let us briefly consider the topic of standardization.

Reminder
For a real random variable X (i.e. X takes values in (a subset of) R) with
expected value E[X] and variance Var(X), the random variable

Z :=
X − E[X]√

Var(X)

has expected value E[Z] = 0 and variance Var(Z) = 1.

This clearly holds because

E[Z] = E[ X−E[X]√
Var(X)

] =
√
Var(X)

−1
(E[X]− E[X]) = 0 and

Var[Z] = Var[ X−E[X]√
Var(X)

] = Var(X)−1(Var(X)− 0) = 1.
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A bit about the math behind PCA Spatial intuition for matrix multiplication

Standardizing Variables II

Extending the intuition of this theoretical fact, we can standardize a
sequence of data points {xi}i=1,...,n, xi ∈ Rm, m,n ∈ N, by defining
a sequence of standardized points {x̃i}i=1,...,n with, for
s2j :=

1
n−1

∑n
i=1(xi − x̄·j)

2 denoting the sample variance of the jth
data variable,

x̃i = (xi1, . . . , xim)⊤ with x̃ij :=
xij − x̄·j

sj
, j = 1, . . .m .

We can break the above standardization down into two steps:

1 Shifting each point by the arithmetic mean

2 Scaling each shifted point by the sample standard deviation.

Going back to the visualization of a "point cloud" this process can be
thought of as either a shifting and scaling of the cloud or a shifting
and relabeling of the axes:
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A bit about the math behind PCA Spatial intuition for matrix multiplication

We recall: Standardizing data points
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A bit about the math behind PCA Spatial intuition for matrix multiplication
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A bit about the math behind PCA Definition of Principal Components

Principal Components I

Given a data-matrix X =

x11 . . . x1m
...

. . .
...

xn1 . . . xnm

 ∈ Rn×m , n,m ∈ N ,

with rows given by the sequence of data points {xi}i=1,...,n, xi ∈ Rm

If we can find m orthogonal vectors a1, . . . ,am ∈ Rm, we have
already learned how they each may be used both

as new axes of the m-dimensional Cartesian coordinate system

to calculate the data’s variance in one of m directions after
orthogonally projecting each data point on the line produced by the
respective vector ap, p ∈ {1, . . . ,m}.
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A bit about the math behind PCA Definition of Principal Components

Principal Components II

Specifically, in PCA, we want to find such m orthogonal vectors
iteratively, ordered by the proportion of the data’s overall variance in
that direction.

Equivalently, we can say that the first Principal Component a1 is
the vector of coefficients in a linear combination

a⊤x = a1x1 + a2x2 + · · ·+ amxm =

m∑
j=1

ajxj (1)

of the original variables that explains the most variance, the second
Principal Component the vector of coefficients in above linear
combination of the original variables that explains the second most
variance, and so on.
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A bit about the math behind PCA Definition of Principal Components

Why not just a straightforward definition? I

While algorithms to carry out principal component analysis are well
documented and implemented in a huge variety of softwares, the
literature is lacking in a clear and formally sound definition of Principal
Components.

For example, the book Principal Component Analysis by I.T. Jolliffe
gives the following definition, in the setting of eq. 1, of PCs on pages
2 and 5:

1 The kth derived variable, a⊤
k x is the kth PC.

2 To derive the form of the PCs, consider first a⊤
1 x; the vector a1

maximizes Var(a⊤
1 x) = a⊤

1 Σa1.
(where Σ is the "known" covariance matrix of the random vector
X = (X1, . . . , Xm)⊤, i.e. the vector of random variables of which we
see each column of X as n realizations.)
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A bit about the math behind PCA Definition of Principal Components

Why not just a straightforward definition? II

Please note a few things:

1 a⊤
k x, whether considered as random or

not, takes values in R. As such,
common PC plots such as on the right,
would not make any sense if the PCs are
defined as a⊤

1 x, . . . ,a
⊤
mx.

2 Considering the covariance matrix Σ of
the random vector X = (X1, . . . , Xm)⊤

as known makes little sense, since we
simply transforming data and not
making any distributional assumptions.

Source: ResearchGate
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A bit about the math behind PCA Definition of Principal Components

Why not just a straightforward definition? III

3 Of course, the last issue is easily remedied by replacing the term

Var(a⊤
k x) = a⊤

k Σak

with
V̂ar(a⊤

k x) = a⊤
k Sak ,

where S denotes the sample covariance matrix, i.e. the matrix with
the sample covariances as entries (and the sample variances on the
diagonal).

4 Lastly, please note that viewing any elements as random variables in
the context of PCA may legitimately be considered superfluous.
Specifically, we could simply use the concepts of inertia and center of
gravity instead of variance and mean to obtain all necessary
information.
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A bit about the math behind PCA Definition of Principal Components

Quick reminder: Sample covariance/correlation matrices I

Recall that for each of the m ∈ N variables (or columns) of given
data, the sample variance is given by

s2j :=
1

n− 1

n∑
i=1

(xij − x̄·j)
2 , j = 1, . . . ,m

and the sample covariance between the jth and kth variable/column
by

skj :=
1

n− 1

n∑
i=1

(xij − x̄·j) (xik − x̄·k) , 1 ≤ k, j ≤ m, j ̸= k.
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A bit about the math behind PCA Definition of Principal Components

Quick reminder: Sample covariance/correlation matrices II

And the sample covariance matrix, which we denote by S but is
often still denoted by Σ, is defined as

S =


s21 s12 . . . s1m
s21 s22 . . . s2m
...

...
. . .

...
sm1 sm2 . . . s2m

 ∈ Rm×m .

It then immediately follows that:
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A bit about the math behind PCA Definition of Principal Components

Quick reminder: Sample covariance/correlation matrices III

S =
1

n− 1

n∑
i=1

 (xi1 − x̄·1)
2 · · · (xi1 − x̄·1) (xim − x̄·m)

...
. . .

...
(xim − x̄·m) (xi1 − x̄·1) · · · (xim − x̄·m)2



=
1

n− 1

n∑
i=1

 (xi1 − x̄·1)
...

(xim − x̄·m)

((xi1 − x̄·1) . . . (xim − x̄·m)

)

=
1

n− 1

n∑
i=1

(x̄i − x̄) (x̄i − x̄)⊤ .

⇒ Let XC denote the matrix of the data points shifted by the arithmetic
mean. It then follows that S = 1

n−1X
⊤
CXC .

Hannah Kümpel Multivariate Verfahren 33 / 65



A bit about the math behind PCA Definition of Principal Components

Quick reminder: Sample covariance/correlation matrices IV

Recall that for two of the m ∈ N variables (or columns) of given data,
the sample correlation is given by, for i, j ∈ {1, . . . ,m},

rij :=


1 , if i = j,

sij√
s2i s

2
j

, otherwise.
.

And the sample correlation matrix, which we denote by R, is
defined as

R =


1 r12 . . . r1m
r21 1 . . . r2m
...

...
. . .

...
rm1 rm2 . . . 1

 ∈ Rm×m .
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

Determining the principal component vectors I

Regardless of the arguable lack of formal definition, the following is clear:

The m Principal Component (vectors) a1, . . . ,am are derived...

... by iteratively maximizing

a⊤
p Sap , p = 1, . . . ,m .

under the following constraints:

1 ap is normalized, i.e. a⊤
p ap = 1

2 ap is orthogonal to all previous PCs, i.e.

a⊤
p aj = 0 , p = 2, . . . ,m ; j = 1, . . . , p− 1.

(Clearly this leads to a set of PCs that are all orthogonal.)
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

Determining the principal component vectors II

Iteratively solving argmax
a∈Rm

a⊤
p Sap under these constraints may be

achieved using one of the following three ways:

1 the method of Lagrange multipliers

2 Eigendecomposition of S

3 Singular value decomposition of the centered data matrix XC
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Lagrange Multipliers I

First things first: The method of Lagrange multipliers is a
strategy for finding the local Extrema of a function subject to
equation constraints. Formally this can be expressed as follows:

(See p.285 of Fuente, A. (2000). Mathematical Methods and Models
for Economists. Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511810756 for more.)
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Lagrange Multipliers II

The method of Lagrange Multipliers
Consider, for two twice continuously differentiable functions
f : Rm ⊇ X −→ Rc and g : Rm ⊇ X −→ R, with m, c ∈ N and c ≤ m,
the optimization problem

max
x∈Rm

{f(x) s.t. g(x) = 0} .

Let x∗ be an optimal solution to the above optimization problem such
that rank(D g(x∗)) = c . Then there exists a unique Lagrange multiplier
λ∗ ∈ Rc such that

D f(x∗) = λ∗⊤D g(x∗).

(where D g(x∗) and D g(x∗) denote the matrices of partial derivatives,[
D g(x∗)

]
j,k

=

[
∂gj
∂xk

]
and

[
D g(x∗)

]
j,k

=

[
∂fj
∂xk

]
,respectively.)
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Lagrange Multipliers III

Applying Lagrange multipliers to the iterative maximization problem of
slide 35 gives:

Determining the 1. PC a⊤
1 =

maximizing a⊤
1 Sa1 under the

constraint a⊤
1 a1 = 1:

L(a1) = aT
1 Sa1 − λ(a⊤

1 a1 − 1) → max

⇔ ∂L

∂a1
= 2Sa1 − 2λa1

!
= 0

⇒ (S − λI)a1
!
= 0

Determining the 2. PC a⊤
2 =

maximizing a⊤
2 Sa2 under the

constraints a⊤
2 a2 = 1 and a⊤

2 a1 = 0:

L(a2) = a⊤
2 Σa2 − λ1 (a⊤

2 a2 − 1)

−λ2 (a⊤
1 a2) → max

⇔ ∂L

∂a2
= 2Sa2 − 2λ1a2 − 2λ2a1

!
= 0

⇒ Choosing λ = (λ1, λ2)
⊤ =

(
λ
0

)
we get

(S − λI)a2
!
= 0

and
so
on
for
the
3rd
to
mth
PCs...
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition I

Considering the last equations to be solved in the previous slide were of
the form (S − λI)ai

!
= 0, it stands to reason that the PCs that solve

a⊤
p Sap → max

are just the eigenvectors of the sample covariance matrix S.

Specifically, we can derive the m Principal Component (vectors)
a1, . . . ,am as follows:
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition II

Eigendecomposition of S with eigenvalues ordered by size
Consider an Eigendecomposition of the sample covariance matrix

S = V ΛordV
−1 ,

where Λord denotes a diagonal m×m matrix with the largest to smallest
eigenvalues of S on the diagonal, i.e. λ11 ≥ λ22 ≥ . . . ≥ λmm .

The m Principal Component (vectors) a1, . . . ,am are then given by the
columns of the matrix V , i.e.

ai =

 v1i
...

vmi

 ∀i ∈ {1, . . . ,m} .
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition III

An alternative motivation: Mean-centered ellipse

Note that since the eigenvectors of the sample covariance matrix are
orthogonal per definition, we have V −1 = V ⊤ in the previous
decomposition and, therefore,

S = V ΛordV
−1 = V ΛordV

⊤ =

m∑
j=1

λjjv·jv
⊤
·j

Furthermore,

S−1 = V Λ−1
ordV

⊤ =
m∑
j=1

1

λjj
v·jv

⊤
·j .
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition IV

An alternative motivation: Mean-centered ellipse

For some r ∈ R, the set{
x ∈ Rm : (x− x̄)⊤S−1(x− x̄) = r2

}
gives the surface of an m-dimensional ellipsoid.

This ellipsoid is equal to the one that results from multiplying an
m-ball (circle when m = 2) with radius r around the origin with the
sample covariance matrix S.

The axes of such an ellipsoid are then given by rλ11a1, . . . , rλmmam,
i.e. the eigenvectors of S multiplied with the corresponding
eigenvalues and r.
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition V

This is nicely visualized in R2 using R:

library(mvtnorm)
circle <- function(center = c(0,0),r = 1, npoints = 100){

tt <- seq(0,2*pi,length.out = npoints)
xx <- center[1] + r * cos(tt)
yy <- center[2] + r * sin(tt)
return(data.frame(x1 = xx, x2 = yy))

}

set.seed(4321)
example_dat<-as.data.frame(rmvnorm(1000,mean=c(12,10),sigma=matrix(c(3,1,1,0.5),ncol=2)))
S<-cov(example_dat)

circs<-do.call("rbind",lapply(as.list(seq(1,10,by=1)),function(x){cbind(circle(center=c(0,0),
r=as.numeric(x)),r=x,npoints=100)}))

p<-ggplot(circs)+labs(x="x1",y="x2")+
geom_point(aes(example_dat$V1-colMeans(example_dat)[1],example_dat$V2-colMeans(example_dat)[2]),shape=1)+
theme_void()

p

p+geom_path(aes(apply(cbind(x1,x2),1,function(x)S%*%x)[1,],
apply(cbind(x1,x2),1,function(x)S%*%x)[2,],color=as.factor(r)))+

labs(color="r")+theme(legend.position = c(0.8,0.33))
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via Eigendecomposition VI
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PCA via Eigendecomposition VI
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via SVD I

Finally, let XC denote the matrix of the data points shifted by the
arithmetic mean and consider its singular value decomposition

XC = UΣV ⊤ .

It clearly follows that

S =
X⊤

CXC

n− 1
=

(
UΣV ⊤)⊤(UΣV ⊤)

n− 1

=
V Σ⊤U⊤UΣV ⊤

n− 1

and, since the singular values are always ordered in SVD, the m
Principal Component (vectors) a1, . . . ,am are again given by the
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

PCA via SVD II

columns of the matrix V , i.e.

ai =

 v1i
...

vmi

 ∀i ∈ {1, . . . ,m} .

Thereby, we have shown that the PCs may also be derived
directly via the singular value decomposition of the centered
matrix XC .

In practice, this is only relevant for computational reasons, since for
data with extremely many observations, the SVD solution saves the
expense of having to compute a sample covariance matrix.
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

Standardized version I

Importantly, PCA is NOT scale-invariant!

In cases where the variables/columns/features take values in vastly
different ranges, it therefore makes sense to standardize all variables
instead of only centering them.

Luckily, the procedure stays the same:

Since the sample correlation matrix R already gives us the sample
variance of the standardized variables, the issue simply becomes
a⊤
p Rap → max, p = 1, . . . ,m.
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A bit about the math behind PCA PCA via Lagrange multiplier, Eigendecomposition, & SVD

Standardized version II

Iteratively solving argmax
a∈Rm

a⊤
p Rap under the same constraints may

equivalently be achieved using one of the following three ways:

1 the method of Lagrange multipliers

2 Eigendecomposition of R

3 Singular value decomposition of the standardized data matrix
XZ , i.e. the matrix with entries(

XZ

)
ij
=

xij − x̄·j

sj
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A bit about the math behind PCA Dimension reduction via PCA

Dimension reduction via PCA:
Projecting onto the first k < m PCs I

Once the matrix V ∈ Rm×m containing the 1st to mth PCs as
columns has been determined and we have chosen a k ∈ N with
k < m as the "goal dimension", the rest is very straightforward:

Dimension reduction via PCA

Consider the matrix VK =


v11 ... v1k

...
...

...

vm1 ... vmk

 ∈ Rm×k, which is the matrix of

the first k columns of V (i.e. PCs of X).
The data matrix with reduced dimension k is then given by

X̃ = XVK ∈ Rn×k .
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A bit about the math behind PCA Dimension reduction via PCA

Dimension reduction via PCA:
Projecting onto the first k < m PCs II

Different criteria for choosing k appropriately will be discussed
in section 4.

For now, note that the entries of the data matrix X̃ with n
observations in the lower dimension k are given by

x̃ij :=

m∑
l=1

xil vlj , i = 1, . . . , n; j = 1, . . . , k .

This is equivalent to an orthogonal projection of each data points onto
the plane spanned by the first k PCs.
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Scree plots, Biplots, and some other measures of interest Scree plots

Proportion of variance explained I

Recall that

The trace of a Matrix A ∈ Rn×n, n ∈ N, with entries
(aij)i,j=1,...,n is defined as the sum of the diagonal entries, i.e.

tr(A) :=

n∑
i=1

aii

and, for two matrices A ∈ Rn×m and B ∈ Rm×n, n,m ∈ N

tr(AB) = tr(BA) .

Since the diagonal entries of the sample covariance matrix S are the
sample variances of the m variables/columns/features, the sum of
sample variances is equal to tr(S).
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Scree plots, Biplots, and some other measures of interest Scree plots

Proportion of variance explained II

In the context of PCA the sum of sample variances is sometimes also
referred to as total variance or overall variance and is also equal to the
sum of eigenvalue of the sample covariance matrix S, since

tr(S) = tr(V ΛordV
⊤) = tr(V ⊤V Λord) = tr(Λord) =

m∑
i=1

λi .

For the first k ∈ N PCs, k ≤ m, the proportion of variance
explained is defined as ∑k

i=1 λi

tr(Λord)
,

i.e. the proportion of the sum of variances explained by the first k PCs.
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Scree plots, Biplots, and some other measures of interest Scree plots

Scree plots I

Generally, a scree plot is a line plot of the eigenvalues of factors or
principal components in an analysis, ordered in descending fashion.

For our purposes, specifically, it is a line plot (possibly with additional
bars) with the PC-indices on the x-axis and the value of the
corresponding eigenvalue or its proportion of variance explained on the
y-axis.
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Scree plots, Biplots, and some other measures of interest Scree plots

Scree plots II

Which Scree Plot fits which data?
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Scree plots, Biplots, and some other measures of interest Scree plots

Scree plots III

Which Scree Plot fits which data?
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Scree plots, Biplots, and some other measures of interest Biplots

Loadings and scores

1 Thus far, we have referred to ap, p = 1, . . . ,m, as principal
components or principal component vectors (both slightly vaguely
abbreviated by PCs). Sometimes, however, ap, p = 1, . . . ,m, are also
referred to as loadings of the pth PC.

2 Let xi, i = 1, . . . , n, denote the ith row/observation of the data
matrix X and x̄ the arithmetic mean of all observations. Then, the
score of the pth PC corresponding to the ith observation is
defined as

yip = a⊤
p (xi − x̄), i = 1, . . . , n .

The value yip is the point where the centered ith observation projects
onto the direction vector for the pth component.
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Scree plots, Biplots, and some other measures of interest Biplots

Biplots I

Biplots are exploratory graphs that overlay a

score plot, which is a plot with the first k ≤ m PCs as axes and
the score values of each observation plotted as points, i.e. the
points given by (yi1, . . . , yik)

⊤ ∈ Rk, i = 1, . . . , n

with a loading plot, where the first k ≤ m PCs can again be
seen as the axes, but instead of plotting score values as points,
the loadings of each variable are plotted as labelled, directed
vectors. This is equivalent to plotting each row (observation)
of the following matrix as labelled, directed vectors:

v11 . . . v1k

...
...

...
vm1 . . . vmk




a1 a... ak
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Scree plots, Biplots, and some other measures of interest Biplots

Biplots II

Biplots can be considered as a generalization of simple
two-dimensional scatterplots.

One example from https://rpubs.com/ssipa/281715:
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Scree plots, Biplots, and some other measures of interest Biplots

Biplots III

Some helpful interpretation tips for Biplots:2

Like for any scatterplot we may look for patterns, clusters, and outliers
in a Biplot. In addition, note the following for the loading vectors:

The orientation (direction) of the vector, with respect to the principal
component space, in particular, its angle with the principal component
axes: the more parallel to a principal component axis is a vector, the
more it contributes only to that PC.

The length in the space; the longer the vector, the more variability of
this variable is represented by the two displayed principal components;
short vectors are thus better represented in other dimension.

The angles between vectors of different variables show their correlation
in this space: small angles represent high positive correlation, right
angles represent lack of correlation, opposite angles represent high
negative correlation.

2Source: Hartmann, K., Krois, J., Waske, B. (2018): E-Learning Project SOGA:
Statistics and Geospatial Data Analysis. Department of Earth Sciences, Freie
Universitaet Berlin.
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Criteria for choosing the k PCs to project on

Number of PCs to use for dimension reduction

The goal is to have as much of the variance in the data explained by the
first k principal components as possible.
⇒ Directions of the ellipsoid with short principal axes may be negligible.

SOME possible criteria:
Kaiser criterion: Principal components with eigenvalue greater than 1.
(I.e. the maximal k s.t. λk > 1)

All principal components needed to get a total of 80% of the variance.
(I.e. the minimal k s.t. tr(Λord)

−1 ·
∑k

i=1 λk ≥ 0.8)

Scree Plot: Consider a graphical representation of the eigenvalues. Use
as many principal components up to the bend of the graph (elbow).

Simply choose k so that it is convenient (e.g. for a planned
visualization).
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PCA as a step by step recipe
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